Foundations of Discrete Mathematics

Chapters 11 and 12

By Dr. Dalia M. Gil, Ph.D.

Trees

\square Tree are useful in computer science, where they are employed in a wide range of algorithms.
\square They are used to construct efficient algorithms for locating items in a list.

Trees

\square Trees can be used to construct efficient code saving cost in data transmission and storage.

- Trees can be used to study games such as checkers and chess an can help determine winning strategies for playing these games.

Trees

\square Trees can be used to model procedures carried out using a sequence of decisions.
\square Constructing these models can help determine the computational complexity of algorithms based on a sequence of decisions, such a sorting algorithms.

Trees

ㅁ Procedures for building trees including

ㅁDepth-first search,

ㅁ Breadth-first search,
can be used to systematically explore the vertices of a graph.

Trees

\square A tree is a connected undirected graph with no simple circuits.

- A tree cannot contain multiple edges or loops.
\square Any tree must be a simple graph.

An Example of a Tree

The Bernoulli Family of Mathematicians

[^0]
Example: Trees

Example: Not Trees

$\square G_{3}$ is not a tree.

 e, b, a, d, e is a simple circuit.$\square G_{4}$ is not a tree. It is not connected.

Forest

\square A Forest is a graph containing no simple circuits that are not necessarily connected.
\square Forests have the property that each of their connected components is a tree.

Example: Forest

A one graph with three connected components

Theorem

\square An undirected graph is a tree if and only if there is a unique simple path between any two vertices.

A Rooted Tree

\square A rooted tree is

With root a

a tree in which one vertex has been designated as the root and every edge is directed away from the root.

Rooted Trees

- We can change an unrooted tree into a rooted tree by choosing any vertex as the root.
\square Different choices of the root produce different trees.

Example: Rooted Trees

\square The rooted trees formed by designating a to be the root and c to be the root, respectively, in the tree T .

[^1]
The Terminology for Trees

\square Suppose that T is a rooted tree. If v is a vertex in T other than the root.
\square The parent of v is the unique vertex u such that there is a directed edge from u to v.

The Terminology for Trees

When u is the parent of v, v is called a child of u.
\square Vertices with the same parent are called siblings.

The Terminology for Trees

\square The ancestors of a vertex other than the root are the vertices in the path from the root to this vertex, excluding the vertex itself and including the root.
\square The descendants of a vertex v are those that have v as an ancestor.

The Terminology for Trees

\square A vertex of a tree is called a leaf if it has no children.
\square Vertices that have children are called internal vertices.
\square The root is an internal vertex unless it is the only vertex in the graph, in which case it is a leaf.

The Terminology for Trees

\square If a is a vertex in a tree, the subtree with a as its root is the subgraph of the tree consisting of a and its descendants and all edges incident to these descendant.

Example: Using Terminology

$\square \mathrm{T}$ is a rooted tree with root a.

ㅁ The parent of vertex c is b .
\square The children of g are h, i, and j.

Example: Using Terminology

\square The siblings of h are i and j .
\square The ancestors of e are c, b, and a.
\square The descendant of b are c, d, and e.

Example: Using Terminology

\square The internal vertices are a, b, c, g, h, and j.
\square The leaves are d, e, f, i, k, l, and m.

Example: Using Terminology

\square The subtree rooted at g is

m-ary Tree

\square A rooted tree is called m-ary tree if every internal vertex has no more than m children.
\square The tree is called a full m-ary tree if every internal vertex has exactly m children.

- An m-ary tree with $\mathrm{m}=2$ is called a binary tree.

Example of m-ary tree

$\square \mathrm{T}_{1}$ is a full binary tree.

\square Each of its internal vertices has two children

Example of m-ary tree

$\square T_{2}$ is a full 3-ary tree.

- Each of its internal vertices has three children

Example of m-ary tree

$\square T_{3}$ is a full 5-ary tree.

\square Each of its internal vertices has five children

Example of m-ary tree

$\square \mathrm{T}_{4}$ is not a full m-ary tree for any m.

ㅁ Some of its internal vertices has 2 children and others have 3.

Ordered Rooted Tree

\square In an ordered rooted tree the children of each internal vertex are ordered.
\square Ordered rooted trees are drawn so that the children of each internal vertex are shown in order from left to right.

Ordered Binary Tree

\square In ordered binary tree (a binary tree), an internal vertex has two children.

ㅁ The first child is called the left child and
\square the second child is called the right child.

Ordered Binary Tree

\square The tree rooted at the left child of a vertex is called the left subtree of this vertex,
\square and the tree rooted at the right child of a vertex is called the right subtree of the vertex.

Example

$\square \quad$ The left child of d is f and the right child is g .
\square The left and right subtrees of c are

Properties of Trees

ㅁ A tree with n vertices has $n-1$ edges.
\square A full m-ary tree with i internal vertices contains $\mathrm{n}=\mathrm{m} * \mathrm{i}+1$ vertices.

ㅁ There are at most m^{h} leaves in an m -ary tree of hight h.

Where n : vertices, i : internal vertices.

Properties of a Full m-ary Tree

1. n vertices has $\mathrm{i}=(\mathrm{n}-1) / \mathrm{m}$ internal vertices and $I=[(m-1) n+1] / m$ leaves.
2. i internal vertices has $n=m * i+1$ vertices and $I=(m-1) i+1$ leaves.
3. I leaves has $n=(m * \mid-1) /(m-1)$ vertices and $i=(1-1) /(m-1)$ internal vertices.

- I: leaves, m: children, n: vertices, i:int.vertices

Properties of Trees

- A rooted m-ary tree of height \mathbf{h} is balanced if all leaves are at levels h or $h-1$.

$\square T_{1}$ is balanced.
\square All its leaves are at levels 3 and 4.

Properties of Trees

$\square T_{2}$ is not balanced.

- It has leaves at levels 2, 3, and 4.

Properties of Trees

$\square \mathrm{T}_{3}$ is balanced.

All its leaves are at level 3.

Example: Properties of Trees

$\square \quad$ The root a is at level 0 .
\square Vertices b, j, and k are at level 1.
\square Vertices c, e, f, and I are at level 2.

Example: Properties of Trees

\square Vertices d, g, i, m, and n are at level 3.
\square Vertex h is at level 4.
$\square \quad$ This tree has height 4.

Spanning Trees

- A spanning tree of a connected graph G is a subgraph that is a tree and that includes every vertex of G.
- A minimum spanning tree in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges.

Prim's Algorithm

\square Prim's algorithm constructs a minimum spanning tree.
\square Successively add to the tree edges of minimum weight that are incident to a vertex already in the tree and not forming a simple circuit with those edges already in the tree.
\square Stop when $n-1$ edges have been adding.

Prim's Algorithm

\square Step 1: Choose any vertex v and let e_{1} be and edge of least weight incident with v. Set $k=1$.

- Step 2: While k < n

If there exists a vertex that is not in the subgraph T whose edges are $e_{1}, e_{2}, \ldots, e_{k}$,

- Let $\mathrm{e}_{\mathrm{k}+1}$ be an edge of least weight among all edges of the form $u x$, where u is a vertex of T and x is a vertex not in T;

Prim's Algorithm (cont.)

- Let e_{k+1} be an edge of least weight among all edges of the form $u x$, where u is a vertex of T and x is a vertex not in T;
- Replace k by $\mathrm{k}+1$;
else output $e_{1}, e_{2}, \ldots, e_{k}$ and stop.
end while.

Example Using Prim's Algorithm

\square Use Prim's algorithm to design a minimum-cost communication network connecting all the computers represented by the following graph

FIGURE 1 A Weighted Graph Showing Monthly Lease Costs for Lines in a Computer Network.

Example Using Prim's Algorithm

\square Choosing and initial edge of minimum weight.

- Successively adding edges of minimum weight that are incident to a vertex in a tree and do not form a simple circuit.

Example Using Prim's Algorithm

Choice	Edge	Cost
1	\{Chicago, Atlanta\}	$\$ 700$
2	\{Atlanta, New York\}	
3	\{Chicago, San Francisco\}	
4	San Francisco, Denver\}	$\$ 800$
		Total:

Example Using Prim's Algorithm

Example Using Prim's Algorithm

\square Use Prim's algorithm to find a minimum spanning tree in the following graph.

Example Using Prim's Algorithm

\square Use Prim's algorithm to find a minimum spanning tree in the following graph.

Example Using Prim's Algorithm

\square Use Prim's algorithm to find a minimum spanning tree in the following graph.

[^2]
Kruskal's Algorithm

- This algorithm finds a minimum spanning tree in a connected weighted graph with $\mathrm{n}>1$ vertices.

Kruskal's Algorithm

Step 1: Find an edge of least weight and call this e_{1}. Set $k=1$.
Step 2: While $k<n$
if there exits an edge e such that
$\{e\} \cup\left\{e_{1}, . e_{2}, \ldots, e_{k}\right\}$ does not contain a circuit

* let $\mathrm{e}_{\mathrm{k}+1}$ be such an edge of least weight; replace k by $k+1$;
else output $e_{1}, e_{2}, \ldots, e_{k}$ and stop end while

Example Using Kruskal' Algorithm

\square Use Kruskal's algorithm to find a minimum spanning tree in the following weighted graph.

Example Using Kruskal' Algorithm

ㅁ Use Kruskal's algorithm to find a minimum spanning tree in the following weighted graph.

Choice	Edge	Weight
1	$\{c, d\}$	1
2	$\{k, l\}$	1
3	$\{b, f\}$	1
4	$\{c, g\}$	2
5	$\{a, b\}$	2
6	$\{f, j\}$	2
7	$\{b, c\}$	3
8	$\{j, k\}$	3
9	$\{g, h\}$	3
10	$\{i, j\}$	3
11	$\{a, e\}$	
		Total: $\frac{3}{24}$

[^3]
Example Using Kruskal' Algorithm

\square Use Kruskal's algorithm to find a minimum spanning tree in the following weighted graph.

Choice
1
2
3
4
5
6
7
8
9
10
11

Edge	Weight
$\{c, d\}$	1
$\{k, l\}$	1
$\{b, f\}$	1
$\{c, g\}$	2
$\{a, b\}$	2
$\{f, j\}$	2
$\{b, c\}$	3
$\{j, k\}$	3
$\{g, h\}$	3
$\{i, j\}$	3
$\{a, e\}$	
	Total:
	$\frac{3}{24}$

Digraphs

\square A digraph is a pair (V, E) of sets, V nonempty and each element of E an ordered pair of distinct elements of V .
\square The elements of V are called vertices and the elements of E are called arcs.

Digraphs

\square The same terms can be used for graphs and digraphs.
\square The exception: In a digraph we use term arc instead of edge.
\square An arc is an ordered pair (u, v) or ($v, u)$.
\square An edge is an unordered pair of vertices $\{u, v\}$.

Digraphs

\square The vertices of a graph have degrees, a vertex of a digraph has an indegree and outdigree.
\square Indegree is the number of arcs directed into a vertex.
\square Outdegree is the number of arcs directed away from the vertex.

Examples: Digraphs

$\square \mathrm{G}_{1}$: u has outdegree 1, v has outdegree 1 , w has outdegree 1
$\square \mathrm{G}_{2}$: u has outdegree 2, v has outdegree 1, w has outdegree 0
$\square G_{1}$ and G_{2} are not isomorphic.

Examples: Digraphs

$\square \mathrm{G}_{1}$ is Eulerian because uvwu is an Eulerian circuit and a Hamiltonian cycle.

$\square G_{2}$ has neither an Eulerian nor a Hamiltonian cycle, but it has a Hamiltonian path uvw.

Examples: Digraphs

$\square G_{3}$ has vertices u and x with indegree 2 and outdegree 1.
\square Vertex v has indegree 0 and outdegree 2 and vertex w has indegree 1 and outdegree 1.

Examples: Digraphs

\square The indegree sequence is $2,2,1,0$, and the outdegree sequence is 2 , $1,1,1$.
\square The sum of the indegrees of the vertices equals the sum of the outdegrees of the vertices is the number of arcs.

Examples: Digraphs

$\square G_{3}$ is not Hamiltonian because vertex v has indegree 0.

ㅁ There is no way of reaching v on a walk respecting orientation edges, no Hamiltonian cycle can exist.

Examples: Digraphs

$\square \mathrm{G}_{4}$ is not Hamiltonian because vertex x has outdegree 0 , so no walk respecting orientations can leave x .

Digraphs

\square A digraph is called strongly connected if and only if there is a walk from any vertex to any other vertex that respects the orientation of each arc.
\square A digraph is Eulerian if and only if it is strongly connected and, for every vertex, the indegree equals the outdegree.

Examples: Digraphs

$\square G_{3}$ is not Eulerian. It is not strongly connected (there is no way to reach v).

ㅁ The indegrees and outdegrees of three vertices (u, v, and x) are not the same.

Examples: Digraphs

\square This digraph is Eulerian.

- It is strongly connected (there is a circuit uvwu that permits travel in the direction of arrows between two vertices
\square The indegree and outdegree of every vertex are 2 (an Euler circuit uwvuvwu).

Acyclic Digraphs

- A directed graph is a acyclic if it contains no directed cycles.

\square This digraph is acyclic.
\square There are no cycles.
\square There is never an arc on which to return to the first vertex.

Acyclic Digraphs

\square A directed graph is a acyclic if it contains no directed cycles.

\square This digraph is not acyclic.
\square There are cycles.

A Canonical Ordering

\square A labeling $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}-1}$ of the vertices of a digraph is called canonical if the only arcs have the form $v_{i} v_{j}$ with $\mathrm{i}<\mathrm{j}$.
\square A canonical labeling of vertices is also called a canonical ordering.
\square A digraph has a canonical ordering of vertices if and only if it is acyclic.

A Canonical Ordering

\square A digraph has a canonical ordering of vertices if and only if it is acyclic.
\square A digraph is acyclic if and only if it has a canonical labeling of vertices

Strongly connected Orientation

\square To orient or to assign an orientation to an edge in a graph is to assign a direction to that edge.
\square To orient or assign an orientation to a graph is to orient every edge in the graph.
\square A graph has a strongly connected orientation if it is possible to orient it in such a way that the resulting digraph is strongly connected.

Depth-First Search

\square Depth-first search is a simple and efficient procedure used as the for a number of important computer algorithms in graphs.

- We can build a spanning trees for a connected simple graph using a depthfirst search.

Depth-First Search Algorithm

$\square \quad$ Let G be a graph with n vertices.
Step 1. Choose any vertex and label it 1 . Set $k=1$.
Step 2. While there are unlabeled vertices
if there exists an unlabeld vertex adjacent to k, assign to it the smallest unused label I from the set $\{1,2, \ldots, n\}$ and set $k=1$ else if $k=1$ stop;
else backtrack to the vertex I from which k was labeled and set $\mathrm{k}=\mathrm{l}$.
Step 3. end while.

Example: Depth-First Search

\square Use a depth-first search to find a spanning tree for the graph G.

Example: Depth-First Search

- Arbitrary start with vertex f.
\square A path is built by successively adding edges incident with vertices not already in the path, as long as possible

Example: Depth-First Search

ㅁ From f create a path f, g, h, j

ㅁ (other path could have been built).

Example: Depth-First Search

ㅁ Next, backtrack to k. There is no path beginning at k containing vertices not already visited.

- So, backtrack to h.
\square Form the path h, i.

Example: Depth-First Search

ㅁ Then, backtrack to h, and then to f.

ㅁ From f build the path f, d, e, c, a.

Example: Depth-First Search

ㅁ Then, backtrack

 to c , and form the path c, b.
\square The result is the spanning graph.

[^4]
Example: Depth-First Search

\square Use a depth-first search to find a spanning tree for the graph G.

Topics covered

\square Trees and their properties.
\square Spanning trees and minimum spanning trees algorithms.
\square Depth-First Search.

Reference

- "Discrete Mathematics with Graph Theory", Third Edition, E. Goodaire and Michael Parmenter, Pearson Prentice Hall, 2006. pp 370-410.

Reference

\square "Discrete Mathematics and Its Applications", Fifth Edition, Kenneth H. Rosen, McGrawHill, 2003. pp 631-694.

[^0]: "Discrete Mathematics and its Applications." Fifth Edition, by Kenneth H. Rosen. Mc Graw Hill, 2003. pag 632

[^1]: "Discrete Mathematics and its Applications." Fifth Edition, by Kenneth H. Rosen. Mc Graw Hill, 2003. pag 634

[^2]: "Discrete Mathematics and its Applications." Fifth Edition, by Kenneth H. Rosen. Mc Graw Hill, 2003. pag 691

[^3]: "Discrete Mathematics and its Applications." Fifth Edition, by Kenneth H. Rosen. Mc Graw Hill, 2003. pag 692

[^4]: "Discrete Mathematics and its Applications." Fifth Edition, by Kenneth H. Rosen. Mc Graw Hill, 2003. pag 678

